



### Winter – 19 EXAMINATION

Subject Name: Data Structure Using 'C' Model Answer

Subject Code: 22317

### Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.<br>No. | Sub<br>Q.<br>N. |       | Answer                                                                                                                    |               |  |  |  |  |  |  |  |
|-----------|-----------------|-------|---------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| 1.        |                 | Attem | pt any Five of the following:                                                                                             | 10M           |  |  |  |  |  |  |  |
|           | а               | Write | any four operations that can be performed on data structure.                                                              | 2M            |  |  |  |  |  |  |  |
|           | Ans             | 1.    | Data structure operations (Non Primitive)                                                                                 | 2 M for any 4 |  |  |  |  |  |  |  |
|           |                 | 2.    | <b>Inserting:</b> Adding a new data in the data structure is referred as insertion.                                       | Operation     |  |  |  |  |  |  |  |
|           |                 | 3.    | <b>Deleting:</b> Removing a data from the data structure is referred as deletion.                                         |               |  |  |  |  |  |  |  |
|           |                 | 4.    | <b>Sorting:</b> Arranging the data in some logical order (ascending or descending, numerically or alphabetically).        |               |  |  |  |  |  |  |  |
|           |                 | 5.    | <b>Searching:</b> Finding the location of data within the data structure which satisfy the searching condition.           |               |  |  |  |  |  |  |  |
|           |                 | 6.    | <b>Traversing:</b> Accessing each data exactly once in the data structure so that each data item is traversed or visited. |               |  |  |  |  |  |  |  |
|           |                 | 7.    | <b>Merging:</b> Combining the data of two different sorted files into a single sorted file.                               |               |  |  |  |  |  |  |  |
|           |                 | 8.    | <b>Copying:</b> Copying the contents of one data structure to another.                                                    |               |  |  |  |  |  |  |  |
|           |                 | 9.    | <b>Concatenation:</b> Combining the data from two or more data structure.                                                 |               |  |  |  |  |  |  |  |
|           |                 |       | OR                                                                                                                        |               |  |  |  |  |  |  |  |





|     | Data structure operations (Primitive)                                                                                                                                                                                                                                                                                                                                                      |                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|     | 1. Creation: To create new Data Structure                                                                                                                                                                                                                                                                                                                                                  |                                       |
|     | 2. Destroy: To delete Data Structure                                                                                                                                                                                                                                                                                                                                                       |                                       |
|     | 3. Selection: To access (select) data from the data structure                                                                                                                                                                                                                                                                                                                              |                                       |
|     | 4. Updating: To edit or change the data within the data structure.                                                                                                                                                                                                                                                                                                                         |                                       |
| b   | Define the term overflow and underflow with respect to stack.                                                                                                                                                                                                                                                                                                                              | 2M                                    |
| Ans | Stack overflow: When a stack is full and push operation is performed to                                                                                                                                                                                                                                                                                                                    | 1 M for stack                         |
|     | insert a new element, stack is said to be in overflow state.<br>Max = 4 $Max = 4$                                                                                                                                                                                                                                                                                                          | overflow<br>and 1M for                |
|     | 3 D Kstack top<br>2 C<br>1 B<br>0 A<br>Stack full<br>2 C<br>1 B<br>0 A<br>Stack full<br>2 C<br>1 B<br>0 A<br>Stack top<br>2 C<br>1 B<br>0 A<br>Stack top<br>1 B<br>1 B<br>1 B<br>1 B<br>1 B<br>1 B<br>1 B<br>1 B | underflow                             |
|     | <b>Stack underflow</b> : When there is no element in a stack (stack empty) and pop operation is called then stack is said to underflow state.                                                                                                                                                                                                                                              |                                       |
|     | Max = 4<br>3<br>2<br>1<br>0<br>-1<br>Stack Empty.<br>Max = 4<br>3<br>2<br>1<br>0<br>-1<br>Stack Empty.<br>Max = 4<br>3<br>2<br>1<br>0<br>-1<br>POP<br>Stack Loop                                                                                                                                                                                                                           |                                       |
|     | / Stark and spare.                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| С   | Define the following term w.r.t. tree: (i) In-degree (ii) out-degree.                                                                                                                                                                                                                                                                                                                      | 2M                                    |
| Ans | <b>In -degree:</b> Number of edges coming towards node is in-degree of node.<br>For e.g. : In degree of node B is 1                                                                                                                                                                                                                                                                        | 1 M for each<br>correct<br>definition |
|     | Out -degree: Number of edges going out from node is out -degree of node.                                                                                                                                                                                                                                                                                                                   |                                       |
|     | For e.g. Out Degree of is node D is 2                                                                                                                                                                                                                                                                                                                                                      |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                            |                                       |





|     |                                                                     | A<br>B<br>E<br>J      | c           |                  |                              |
|-----|---------------------------------------------------------------------|-----------------------|-------------|------------------|------------------------------|
| d   | Evaluate the following arithm<br>notation: P : 4, 2, ^, 3, *,3,-,8, | netic expre<br>4 ,/,+ | ession P wr | itten in postfix | 2M                           |
| Ans | Sr.<br>No.                                                          | Symbol<br>Scanner     | STACK       |                  | 2 M for<br>correct<br>answer |
|     | 1                                                                   | 4                     | 4           |                  |                              |
|     | 2                                                                   | 2                     | 4, 2        |                  |                              |
|     | 3                                                                   | ^                     | 16          |                  |                              |
|     | 4                                                                   | 3                     | 16, 3       |                  |                              |
|     | 5                                                                   | *                     | 48          |                  |                              |
|     | 6                                                                   | 3                     | 48,3        |                  |                              |
|     | 7                                                                   | -                     | 45          |                  |                              |
|     | 8                                                                   | 8                     | 45,8        |                  |                              |
|     | 9                                                                   | 4                     | 45,8,4      |                  |                              |
|     | 10                                                                  | /                     | 45,2        |                  |                              |
|     | 11                                                                  | +                     | 47          |                  |                              |
|     |                                                                     |                       |             |                  |                              |





| е   | Describe directed and undirected graph.                                                                                                                                                                                                                                                                               | 2M                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Ans | <b>Direct Graph:</b><br>A directed graph is defined as the set of ordered pair of vertices and edges where each connected edge has <b>assigned a direction.</b>                                                                                                                                                       | 1M for each<br>definition<br>with diagram                    |
|     | V1 V3<br>V2 V4                                                                                                                                                                                                                                                                                                        |                                                              |
|     | <b>Undirected Graph :</b><br>An undirected graph G is a graph in which each edge e is not assigned a direction.                                                                                                                                                                                                       |                                                              |
|     | A B<br>D C                                                                                                                                                                                                                                                                                                            |                                                              |
| 6   |                                                                                                                                                                                                                                                                                                                       |                                                              |
| t   | Give classification of data structure.                                                                                                                                                                                                                                                                                | 21/1                                                         |
| Ans | Primitive Data Structure<br>Primitive Data Structure<br>Integer Float Character Pointer<br>Linear Lists Non-Linear Lists<br>Stacks Queues Graphs Trees                                                                                                                                                                | 2 M for<br>diagram                                           |
| g   | Define queue. State any two applications where queue is used.                                                                                                                                                                                                                                                         | 2M                                                           |
| Ans | A <b>Queue</b> is an ordered collection of items. It has two ends, front and rear.<br>Front end is used to delete element from queue. Rear end is used to insert an<br>element in queue. Queue has two ends; the element entered first in the queue<br>is removed first from the queue. So it is called as FIFO list. | 1M for<br>definition, 1M<br>for<br>applications<br>(any two) |
|     |                                                                                                                                                                                                                                                                                                                       |                                                              |





|   |     | <ul> <li>Front</li></ul>            |                  |                     |                           |                    |                   |         |        |          |         |         |                    |
|---|-----|-------------------------------------|------------------|---------------------|---------------------------|--------------------|-------------------|---------|--------|----------|---------|---------|--------------------|
|   |     | to the s<br>accordi                 | server'          | s hard o<br>heir nu | disk in<br>mber ir        | a queu<br>n the qu | ie. Fron<br>ieue. | n here  | jobs a | re print | ed one- | -by-one |                    |
| 2 |     | Attem                               | nt anv           | Three               | of the                    | follow             | ing               |         |        |          |         |         | 12M                |
|   | а   | Sort th<br>348, 14                  | e give<br>, 641, | n numb<br>3851, 7   | or in a<br>per in a<br>4. | ascendi            | ing ord           | er usir | ng Rad | lix sort | :       |         | 4M                 |
|   | Ans | Pass 1:                             |                  |                     |                           |                    |                   |         |        |          |         |         | 4 M for<br>correct |
|   |     |                                     | 0                | 1                   | 2                         | 3                  | 4                 | 5       | 6      | 7        | 8       | 9       | answer             |
|   |     | 0348                                |                  |                     |                           |                    |                   |         |        |          | 0348    |         |                    |
|   |     | 0014                                |                  |                     | X,                        | •                  | 0014              |         |        |          |         |         |                    |
|   |     | 0641                                |                  | 0641                | <b>Y</b>                  |                    |                   |         |        |          |         |         |                    |
|   |     | 3851                                |                  | 3851                |                           |                    |                   |         |        |          |         |         |                    |
|   |     | 0074                                |                  |                     |                           |                    | 0074              |         |        |          |         |         |                    |
|   |     | 0641,3851,0014,0074,0348<br>Pass 2: |                  |                     |                           |                    |                   |         |        |          |         |         |                    |
|   |     | <u> </u>                            |                  |                     |                           | 1.                 | [                 |         |        | Γ.       |         |         |                    |
|   |     |                                     | 0                | 1                   | 2                         | 3                  | 4                 | 5       | 6      | 7        | 8       | 9       |                    |
|   |     | 0641                                |                  |                     |                           |                    | 0641              | 2054    |        |          |         |         |                    |
|   |     | 3851                                |                  |                     |                           |                    |                   | 3851    |        |          |         |         |                    |
|   |     | 0014                                |                  | 0014                |                           |                    |                   |         |        |          |         |         |                    |
|   |     | 0074                                |                  |                     |                           |                    |                   |         |        | 0074     |         |         |                    |
|   |     | 0348                                |                  |                     |                           |                    | 0348              |         |        |          |         |         |                    |

**5 |** 2 8





|   | Pass 3    | :<br>0<br>0014    | 1                        | <b>00</b> 1        | <b>14,064</b> 1<br>3          | 1 <b>,0348</b> , | 3 <b>851,0</b> 0     | 0 <b>74</b><br>6   | 7              | 8      | 9      |                                                   |
|---|-----------|-------------------|--------------------------|--------------------|-------------------------------|------------------|----------------------|--------------------|----------------|--------|--------|---------------------------------------------------|
|   | 0641      |                   |                          |                    | 0242                          |                  |                      | 0641               |                |        |        |                                                   |
|   | 0348      |                   |                          |                    | 0348                          |                  |                      |                    |                | 2051   |        |                                                   |
|   | 0074      | 0074              |                          |                    |                               |                  |                      |                    |                | 2021   |        |                                                   |
|   | Pass 4    | :                 |                          | Γ                  | 0014,0                        | 0074,03          | 348,064              | 1,3851             |                | 1      |        |                                                   |
|   |           | 0                 | 1                        | 2                  | 3                             | 4                | 5                    | 6                  | 7              | 8      | 9      |                                                   |
|   | 0014      | 0014              |                          |                    |                               |                  |                      |                    |                |        |        |                                                   |
|   | 0074      | 0074              |                          |                    |                               |                  |                      |                    |                |        |        |                                                   |
|   | 0548      | 0548              |                          |                    |                               |                  |                      |                    |                |        |        |                                                   |
|   | 3851      | 0041              |                          |                    |                               | 3851             |                      |                    |                |        |        |                                                   |
|   | b Write   | an algo<br>linked | Sorte<br>orithm<br>list. | ed Elen<br>to inse | nents a<br>ert a ne           | ew node          | , 74, 34<br>e at the | 8, 641,<br>e begin | 3851<br>ning a | nd end | of the | 4M                                                |
| Δ | Ans 1. Al | gorithn           | n for in                 | serting            | g a nod                       | le at th         | e begin              | ning               |                |        |        | 2M for<br>Algorithm for                           |
|   |           |                   | 1. [cl                   | heck th<br>if Ptr- | arı, iter<br>e overf<br>=NULI | low]<br>L then p | orint 'O             | verflov            | v'             |        |        | inserting a<br>node at the<br>beginning<br>2M for |
|   |           |                   |                          | exit<br>else       |                               |                  |                      |                    |                |        |        | Algorithm for<br>Inserting A<br>Node at the       |
|   |           |                   |                          | Ptr=(1             | node *)                       | mallo            | c (size o            | of (nod            | e))            |        |        | End                                               |
|   |           |                   | //creat                  | te new 1           | node fr                       | om me            | mory a               | nd assig           | gn its a       | ddress | to ptr |                                                   |

















|    |     | 22                                                                                                              | 33                                     |                                                  |                        |              |
|----|-----|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|------------------------|--------------|
|    |     |                                                                                                                 | $\leq$                                 |                                                  |                        |              |
|    |     |                                                                                                                 | 4                                      | •                                                |                        |              |
| 3. |     | Attempt any Three of the follo                                                                                  | wing:                                  |                                                  |                        | 12M          |
|    | а   | Explain time and space comple                                                                                   | xity wi                                | th an examp                                      | le.                    | 4M           |
|    | Ans | Time Complexity: Time compl                                                                                     | exity of                               | f program or                                     | algorithm is amount of | 2M for Time  |
|    |     | computer time that it needs                                                                                     | to run                                 | to complet                                       | ion. To measure time   | Complexity   |
|    |     | complexity of an algorithm we                                                                                   | concer                                 | itrate on dev                                    | eloping only frequency | and          |
|    |     | count for key statements.                                                                                       |                                        |                                                  |                        | 2M for space |
|    |     | Example:                                                                                                        |                                        |                                                  |                        | complexity   |
|    |     | #include <stdio.h></stdio.h>                                                                                    |                                        |                                                  |                        |              |
|    |     | void main ()                                                                                                    | 6                                      |                                                  |                        |              |
|    |     | {                                                                                                               |                                        |                                                  |                        |              |
|    |     | int i, n, sum, x;                                                                                               |                                        | <b>Y</b>                                         |                        |              |
|    |     | sum=0;                                                                                                          |                                        |                                                  |                        |              |
|    |     | printf("\n Enter no of                                                                                          | data to                                | be added");                                      |                        |              |
|    |     | scani(~~0~d~,~en);                                                                                              | 7                                      |                                                  |                        |              |
|    |     | 101(1-0, 1<11, 1++)                                                                                             |                                        |                                                  |                        |              |
|    |     | Statement                                                                                                       | Frequenc                               | Computational Tin                                | me                     |              |
|    |     |                                                                                                                 | y                                      | -                                                |                        |              |
|    |     | sum=0                                                                                                           | 1                                      | t1                                               |                        |              |
|    |     | <pre>printf("\n Enter no of data to be added")</pre>                                                            | 1                                      | t <sub>2</sub>                                   |                        |              |
|    |     | scanf("% d", &n)                                                                                                | 1                                      | t3                                               |                        |              |
|    |     | for(i=0; i <n; i++)<="" th=""><th>n+1</th><th>(n+1)t4</th><th></th><th></th></n;>                               | n+1                                    | (n+1)t4                                          |                        |              |
|    |     | scanf("%d", &x)                                                                                                 | n                                      | nt <sub>5</sub>                                  |                        |              |
|    |     | sum=sum+x                                                                                                       | n                                      | nt <sub>6</sub>                                  |                        |              |
|    |     | $printf("\n Sum = %d", sum)$                                                                                    | 1                                      | t7                                               |                        |              |
|    |     | Total computational ti<br>T=n(t4+t5+t6)+(t1+t)<br>For large n, T can be<br>T=n(t4+t5+t6)=kn w<br>Thus T = kn or | me= t1<br>t2+t3+t<br>approx<br>here k= | +t2+t3+(n+1)<br>4+t7)<br>imated to<br>= t4+t5+t6 | )t4 +nt6+nt5+t7        |              |











| Algorithm A: - a=a+1                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithm B: - for $x = 1$ to n step 1                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a=a+1                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Loop                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Algorithm C:- for $x=1$ to n step 1                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| for $y=1$ to n step 1                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| y = 1 to it step 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Loop                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cy count for algorithm A is 1 as $a=a+1$ statement will execute only requency count for algorithm B is n as $a=a+1$ is key statement n time as the loop runs n times.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cy count for algorithm C is n as $a=a+1$ is key statement executes n2<br>the inner loop runs n times, each time the outer loop runs and the<br>praise runs for n times                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>omplexity</b> :- Space complexity of a program/algorithm is the amount<br>ory that it needs to run to completion. The space needed by the<br>is the sum of the following components:-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>pace requirements</b> : - It includes space for instructions, for simple s, fixed size structured variables and constants.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| e time requirements: - It consists of space needed by structured<br>s whose size depends on particular instance of variables. Example: -<br>al space required when function uses recursion. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| the following infix expression to postfix expression using stack<br>w the details of stack in each step.((A+B)*D)^(E-F)                                                                     | 4M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                             | Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                             | answer $4M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| pression:                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| pression:<br>*D)^(E-F))                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| pression:<br>*D)^(E-F))                                                                                                                                                                     | answer-4W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| oression:<br>*D)^(E-F))                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                             | Algorithm A: - a=a+1<br>Algorithm B: - for x = 1 to n step 1<br>a=a+1<br>Loop<br>Algorithm C:- for x=1 to n step 1<br>for y=1 to n step 1<br>a=a+1<br>Loop<br>cy count for algorithm A is 1 as a=a+1 statement will execute only<br>requency count for algorithm B is n as a=a+1 is key statement<br>in time as the loop runs n times.<br>cy count for algorithm C is n as a=a+1 is key statement executes n2<br>the inner loop runs n times, each time the outer loop runs and the<br>op also runs for n times.<br><b>complexity</b> :- Space complexity of a program/algorithm is the amount<br>ory that it needs to run to completion. The space needed by the<br>is the sum of the following components:-<br><b>pace requirements</b> : - It includes space for instructions, for simple<br>s, fixed size structured variables and constants.<br><b>e time requirements</b> : - Ih consists of space needed by structured<br>s whose size depends on particular instance of variables. Example: -<br>al space required when function uses recursion.<br><b>t the following infix expression to postfix expression using stack</b><br><b>w the details of stack in each step.((A+B)*D)^(E-F)</b> |





|             | Current                                            | Operator           | Postfix array            |    |
|-------------|----------------------------------------------------|--------------------|--------------------------|----|
|             | Symbol                                             | Stack              |                          |    |
|             | (                                                  | (                  | Empty                    |    |
|             | (                                                  | ((                 | Empty                    |    |
|             | (                                                  | (((                | Empty                    |    |
|             | A                                                  | (((                | А                        |    |
|             | +                                                  | (((+               | А                        |    |
|             | В                                                  | (((+               | AB                       |    |
|             | )                                                  | ((                 | AB+                      |    |
|             | *                                                  | ((*                | AB+                      |    |
|             | D                                                  | ((*                | AB+D                     |    |
|             | )                                                  |                    | AB+D*                    |    |
|             | ^                                                  |                    | AB+D*                    |    |
|             |                                                    | (Y)                | AB+D*                    |    |
|             | Е                                                  | (^(                | AB+D*E                   |    |
|             | -                                                  | (^(-               | AB+D*E                   |    |
|             | F                                                  | (^(-               | AB+D*EF                  |    |
|             | )                                                  | (^                 | AB+D*EF-                 |    |
|             | )                                                  | EMPTY<br>STACK     | AB+D*EF-^                |    |
|             | Postfix expression                                 | n: AB+D*EF-^       |                          |    |
| c Im<br>arr | plement a 'C' program t<br>ay using Linear Search. | o search a particu | llar data from the given | 4M |
| Ans Pro     | ogram:-                                            |                    |                          |    |





|     | # include setdie h                                                | 2M for logic                            |
|-----|-------------------------------------------------------------------|-----------------------------------------|
|     | # include <conio h=""></conio>                                    | And 2 M for                             |
|     | woid main ()                                                      | Allu 2 IVI IOI                          |
|     |                                                                   | Syntax                                  |
|     | $\begin{cases} 1 \\ int a [10] \\ n \\ barrie a \\ 0 \end{cases}$ |                                         |
|     | $\inf_{z \in \mathcal{D}} a[10], n, key, 1, c=0;$                 |                                         |
|     | clrscr();                                                         |                                         |
|     | printf ("Enter number of array elements\n");                      |                                         |
|     | scanf ("%d", &n);                                                 |                                         |
|     | printf ("Enter array elements\n");                                |                                         |
|     | for (i=0; i< n; i++)                                              |                                         |
|     | scanf ("%d", &a[i]);                                              |                                         |
|     | prinntf ("Enter key value\n");                                    |                                         |
|     | scanf ("%d", &key);                                               |                                         |
|     |                                                                   |                                         |
|     | for(i=0;i <n-1;i++)< th=""><th></th></n-1;i++)<>                  |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     | if $(\text{key} == a[i])$                                         |                                         |
|     |                                                                   |                                         |
|     | c=1:                                                              |                                         |
|     | printf ("%d is found at location %d\n", key, $i+1$ ):             |                                         |
|     | break.                                                            |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     | $\begin{cases} \\ if(a=0) \end{cases}$                            |                                         |
|     | $\prod (C==0)$ $mint \int (50/4) = 0$ $mint \int (50/4) = 0$      |                                         |
|     | printi ( % d not present in the list\n ,key);                     |                                         |
|     | getch();                                                          |                                         |
|     | }                                                                 |                                         |
| d   | Draw an expression tree for the following expression:             | 4M                                      |
|     | $(a-2b+5e)^{2} * (4d=6e)^{3}$ .                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Ans |                                                                   | Correct                                 |
|     |                                                                   | Expression                              |
|     |                                                                   | tree-4M                                 |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |
|     |                                                                   |                                         |





| 4. |      | Attempt any Three of the following:                                          | 12M           |
|----|------|------------------------------------------------------------------------------|---------------|
|    | а    | Find the position of element 21 using binary search method in array 'A'      | 4M            |
|    | Anc  | given below: A=(11,5,21,3,29,17,2,45}                                        | Fach correct  |
|    | Alls | Given Array                                                                  | step -2M each |
|    |      | 11 5 21 3 29 17 2 45                                                         |               |
|    |      | Sorted Array for input:                                                      |               |
|    |      | 2         3         5         11         17         21         29         45 |               |
|    |      | Key element to be searched=21                                                |               |
|    |      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                        |               |
|    |      | 2         3         5         11         17         21         29         45 |               |
|    |      | l=0 and u=n-1 =7                                                             |               |
|    |      | mid=(l+u)/2 = 7/2 = 3                                                        |               |
|    |      | a[mid]=11 not equal to 21<br>and                                             |               |





|     | 21 > 11      | l=mid            | +1 = 4 and  | u = 7           |              |   |               |
|-----|--------------|------------------|-------------|-----------------|--------------|---|---------------|
|     | Step 2:      |                  |             |                 |              |   |               |
|     | -            | 4                | 5           | 6               | 7            |   |               |
|     |              | 17               | 21          | 29              | 45           |   |               |
|     |              |                  |             |                 |              |   |               |
|     | l=4 and u =7 | 7                |             |                 |              |   |               |
|     | mid= 11/2 =  | 5                |             |                 |              |   |               |
|     | a[mid]=21 e  | qual to key e    | lement 21   |                 |              |   |               |
|     | therefore ke | ey element 21    | is fount ur | 1 array at po   | sition 6     |   |               |
|     |              |                  |             |                 | 2)           |   |               |
| b   | Difference b | etween tree a    | and graph(  | Any 4 points    |              |   | 4M            |
| Ans |              |                  |             |                 | 7            | _ | Any correct 4 |
|     |              | Tree             | •           | Gra             | ıph          |   | points- 4M    |
|     |              | Tree is specia   | al form     | In graph there  | e can be     |   |               |
|     |              | of graph i.e.    |             | more than one   | e path i.e.  |   |               |
|     |              | minimally co     | nnected     | graph can hav   | ve uni-      |   |               |
|     |              | graph and ha     | ving        | directional or  | bi-          |   |               |
|     |              | only one path    |             | directional pa  | ths (edges)  |   |               |
|     |              | between any      | two         | between node    | es           |   |               |
|     |              | Tracia correct   |             | Cranh agn ha    | va laana     | - |               |
|     |              | If the is a spec | cial case   | Graph can na    | ve loops,    |   |               |
|     |              | loops no sir     | ing no      | baya salf loor  |              |   |               |
|     |              | no solf loops    |             | nave sen-ioo    | 08.          |   |               |
|     |              | Troo trovoroo    | Lico d      | Graph is traw   | aread by     | - |               |
|     |              | kind of speci    | al case     | DFS: Denth F    | First Search |   |               |
|     |              | of traversal of  | of graph    | and in BFS · ]  | Breadth      |   |               |
|     |              | Tree is traver   | sed in      | First Search a  | lgorithm     |   |               |
|     |              | Pre-Order In     | -Order      | i iist bearen a | agomm        |   |               |
|     |              | and Post-Ord     | ler         |                 |              |   |               |
|     |              | Different typ    | es of '     | There are mai   | inly two     |   |               |
|     |              | trees are: Bin   | ary         | types of Gran   | hs: Directed |   |               |
|     |              | Tree, Binarv     | Search      | and Undirecte   | ed graphs.   |   |               |
|     |              | Tree, AVL tr     | ree,        |                 | 01           |   |               |
|     |              | Heaps.           | <i>`</i>    |                 |              |   |               |

















|                                                     |                          | 1                       | top=top  | p-1 20                         | ) is deleted  |  |                  |  |  |
|-----------------------------------------------------|--------------------------|-------------------------|----------|--------------------------------|---------------|--|------------------|--|--|
|                                                     |                          |                         | stack[9] | ]                              |               |  |                  |  |  |
|                                                     |                          |                         | stack[8  | ]                              |               |  |                  |  |  |
|                                                     |                          |                         | stack[7] | ]                              |               |  |                  |  |  |
|                                                     |                          |                         | stack[6  |                                |               |  |                  |  |  |
|                                                     |                          |                         | stack[5  |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          |                         | stack[3  | ]                              |               |  |                  |  |  |
|                                                     |                          |                         | stack[2  | ]                              |               |  |                  |  |  |
|                                                     |                          | 10                      | stack[1] | <br>  ton=0                    |               |  |                  |  |  |
|                                                     |                          | 10                      | STACK[U  | j top=0                        |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          | •                       |          |                                |               |  |                  |  |  |
|                                                     |                          | Step 4:                 | PLISH(0  | )                              |               |  |                  |  |  |
|                                                     |                          | t                       | top=tor  | )<br>0+1 st                    | ack[1]=30     |  |                  |  |  |
|                                                     |                          |                         | stack[9] |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          |                         | stack[7] | í () í                         |               |  |                  |  |  |
|                                                     |                          |                         | stack[6] |                                |               |  |                  |  |  |
|                                                     |                          |                         | stack[5  |                                |               |  |                  |  |  |
|                                                     |                          |                         | stack[4  |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |
|                                                     |                          | 454                     |          |                                |               |  |                  |  |  |
| <br>e Compare Linked List and Array (any 4 points). |                          |                         |          |                                |               |  | 4IVI             |  |  |
| AIIS                                                |                          | I inked I ist           |          | Δ                              | rrav          |  | valid difference |  |  |
|                                                     | Array is a collection of |                         |          | Linked List is                 | an ordered    |  |                  |  |  |
|                                                     | elements of similar data |                         |          | collection of elements of same |               |  |                  |  |  |
|                                                     | type                     |                         |          | type which are connected to    |               |  |                  |  |  |
| type.                                               |                          |                         |          | each other using pointers      |               |  |                  |  |  |
|                                                     | Array supports Random    |                         |          | Linked List                    |               |  |                  |  |  |
|                                                     | Access which means       |                         |          | supports Sequential Access     |               |  |                  |  |  |
|                                                     |                          | alamante con ha acca    | ,<br>and | which moone t                  |               |  |                  |  |  |
|                                                     | directly using their ind |                         |          | which means t                  |               |  |                  |  |  |
|                                                     |                          | airectly using their in | idex,    | element/node in a linked list; |               |  |                  |  |  |
|                                                     |                          | like arr[0] for 1st     |          | we have to see                 | luentially    |  |                  |  |  |
|                                                     |                          | element, arr[6] for 7t  | h        | traverse the co                | mplete linked |  |                  |  |  |
|                                                     |                          | element etc.            |          | list, up to that               | element.      |  |                  |  |  |
|                                                     |                          |                         |          |                                |               |  |                  |  |  |





| Hence, accessing<br>elements in an array<br>is fast with a constant<br>time complexity of O (1).<br>In array, Insertion and<br>Deletion operation takes<br>more time, as the memory<br>locations are consecutive<br>and fixed.                                                                              | To access nth element of a<br>linked list, time complexity<br>is O (n).<br>In case of linked list, a new<br>element is stored at the first<br>free and available memory<br>location, with only a single<br>overhead step of storing the<br>address of memory location in<br>the previous node of linked<br>list. Insertion and Deletion<br>operations are fast in linked<br>list. |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Memory is allocated as<br>soon as the array is<br>declared, at compile time.<br>It's also known as Static<br>Memory Allocation.<br>In array, each element is<br>independent and can be<br>accessed using it's index<br>value<br>Array can single<br>dimensional, two<br>dimensional or multidime<br>nsional | Memory is allocated<br>at runtime, as and when a new<br>node is added. It's also known<br>as Dynamic Memory<br>Allocation.<br>In case of a linked list, each<br>node/element points to the<br>next, previous, or maybe both<br>nodes.<br>Linked list can be Linear<br>(Singly), Doubly or Circular li<br>nked list.                                                               |  |
| Size of the array must be<br>specified at time of array<br>declaration.<br>Array gets memory<br>allocated in<br>the Stack section                                                                                                                                                                           | Size of a Linked list is<br>variable. It grows at runtime,<br>as more nodes are added to it.<br>Whereas, linked list gets<br>memory allocated<br>in Heap section.                                                                                                                                                                                                                 |  |





|    |     | arr $arr$ HEADSingle Linke $arr[0]$ 200x100 $5 - 7$ $arr[1]$ 330x104 $5 - 7$ $arr[2]$ 140x108HEADDouble Linke $arr[3]$ 650x112 $5 - 7$ $arr[4]$ 810x116Linked list production | dlist<br>$3 \rightarrow 4 \rightarrow \text{NUL}$<br>$4 \rightarrow \text{NUL}$<br>$4 \rightarrow \text{NUL}$<br>esentation |  |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
|    |     |                                                                                                                                                                               |                                                                                                                             |  |
|    |     |                                                                                                                                                                               |                                                                                                                             |  |
| 5. |     | Attempt any Three of the following:                                                                                                                                           | 12- M                                                                                                                       |  |
|    | а   | Implement a 'C' program to insert element inte                                                                                                                                | the queue and delete 6M                                                                                                     |  |
|    |     | the element from the queue.                                                                                                                                                   |                                                                                                                             |  |
|    | Ans | #include <stdio h=""></stdio>                                                                                                                                                 | Insert logic-                                                                                                               |  |
|    | ,   | #include <conio.h></conio.h>                                                                                                                                                  | 3M, delete                                                                                                                  |  |
|    |     | #define max 5                                                                                                                                                                 | logic-3M                                                                                                                    |  |
|    |     | void main()                                                                                                                                                                   |                                                                                                                             |  |
|    |     | int a[max], front, rear, no, ch, i;                                                                                                                                           |                                                                                                                             |  |
|    |     | clrscr();                                                                                                                                                                     |                                                                                                                             |  |
|    |     | front=rear=-1;                                                                                                                                                                |                                                                                                                             |  |
|    |     | do<br>{                                                                                                                                                                       |                                                                                                                             |  |
|    |     | printf("\n 1.INSERT");                                                                                                                                                        |                                                                                                                             |  |
|    |     | printf("\t 2.DELETE");                                                                                                                                                        |                                                                                                                             |  |
|    |     | printf("\t 3.EXI1");<br>printf("\n\n ENTER YOUR CHOICE:- ");                                                                                                                  |                                                                                                                             |  |
|    |     | scanf("%d",&ch);                                                                                                                                                              |                                                                                                                             |  |
|    |     | switch(ch)                                                                                                                                                                    |                                                                                                                             |  |
|    |     |                                                                                                                                                                               |                                                                                                                             |  |
|    |     | printf("\n ENTER ITEM TO BE INSERTED :- ")                                                                                                                                    | :                                                                                                                           |  |
|    |     | scanf("%d",&no);                                                                                                                                                              |                                                                                                                             |  |
|    |     | if(rear==max-1)                                                                                                                                                               |                                                                                                                             |  |
|    |     | { printf ("\n QUEUE IS FULL.");                                                                                                                                               |                                                                                                                             |  |
|    |     |                                                                                                                                                                               |                                                                                                                             |  |





|   | break;                                                         |    |
|---|----------------------------------------------------------------|----|
|   | }                                                              |    |
|   | rear=rear+1;                                                   |    |
|   | a[rear]=no;                                                    |    |
|   | if(front==-1)                                                  |    |
|   | front=0;                                                       |    |
|   | break;                                                         |    |
|   | case 2:                                                        |    |
|   | if(front==-1)                                                  |    |
|   | {<br>nrintf ("\n OLIELIE IS EMDTY ");                          |    |
|   | print ( \n QUEUE IS EMPT 1. ),                                 |    |
|   | l dicak,                                                       |    |
|   | no-alfront]:                                                   |    |
|   | $\operatorname{printf}("\n DELETED FLEMENT IS:- %d" no):$      |    |
|   | if(front==rear)                                                |    |
|   | front=rear=-1:                                                 |    |
|   | else                                                           |    |
|   | front=front+1:                                                 |    |
|   | break:                                                         |    |
|   | case 3:                                                        |    |
|   | exit(0);                                                       |    |
|   |                                                                |    |
|   | printf("\n\n DO YOU WANT TO CONTINUE:(1 FOR YES/2 FOR NO):-"); |    |
|   | scanf("%d",&ch);                                               |    |
|   | }while(ch==1);                                                 |    |
|   | getch();                                                       |    |
|   |                                                                |    |
| b | Consider the graph given in following figure and answer given  | 6M |
|   | questions.                                                     |    |
|   |                                                                |    |
|   | $(1) \rightarrow (2)$                                          |    |
|   | X                                                              |    |
|   |                                                                |    |
|   | ~(3)                                                           |    |
|   | The                                                            |    |
|   |                                                                |    |
|   | 1/ (5)                                                         |    |
|   | (H)                                                            |    |
|   |                                                                |    |
|   | 1)All simple path from 1 to 5                                  |    |
|   | 2)In-degree of and out-degree of 4                             |    |
|   | 3) Give Adjacency matrix for the given graph.                  |    |
|   | 4) Give Adjacency list representation of the given graph.      |    |











|    |     | Representation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|    |     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|    | C   | Write an algorithm to search a narticular node in the give linked list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6M            |
|    | Ans | Assumption:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Correct steps |
|    |     | Node contains two fields: info and next pointer<br>start pointer : Header node that stores address of first node<br>step 1: start<br>step 2: Declare variable no, flag and pointer temp<br>step 3: Input search element<br>step 4: Initialize pointer temp with the address from start pointer.(<br>temp=start), flag with 0<br>step 5: Repeat step 6 till temp != NULL<br>step 6: compare: temp->info = no then<br>set flag=1 and go to step 7<br>otherwise<br>increment pointer temp and go to step5<br>step 7: compare: flag=1 then<br>display "Node found" | 6M            |
|    |     | otherwise<br>display "pode not found"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|    |     | step 8: stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| 6  |     | Attempt any Three of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1214          |
| 0. | а   | Elaborate the steps for performing selection sort for given elements of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6M            |
|    |     | array. A={37,12,4,90,49,23,-19}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |

















| D   | Explain the con                                                                                                                                                                                                                                                                                                                            | cept of r                                | ecursion                                 | using stat                               | ek.                                   |         |               |        | 6M                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|---------|---------------|--------|----------------------------------------|
| Ans | Recursion is a process of calling a function by itself. a recursive function<br>body contains a function call statement that calls itself repetitively.<br>Recursion is an application of stack. When a recursive function calls itself<br>from body, stack is used to store temporary data handled by the function in<br>every iteration. |                                          |                                          |                                          |                                       |         |               |        | Explanation-<br>4M & 2M for<br>Example |
|     | Example:                                                                                                                                                                                                                                                                                                                                   |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | function call fro                                                                                                                                                                                                                                                                                                                          | m main()                                 | : fact(n);                               | // conside                               | r n=5                                 |         |               |        |                                        |
|     | Function definit                                                                                                                                                                                                                                                                                                                           | ion:                                     |                                          |                                          |                                       |         |               |        |                                        |
|     | int fact(int n)<br>{                                                                                                                                                                                                                                                                                                                       |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | if(n==1)<br>return 1:                                                                                                                                                                                                                                                                                                                      |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | else                                                                                                                                                                                                                                                                                                                                       |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | return(n*fact(n-1));                                                                                                                                                                                                                                                                                                                       |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | In the above rec                                                                                                                                                                                                                                                                                                                           | cursive fu                               | inction a                                | function c                               | all fact                              | (n-1) n | nakes a recu  | ursive |                                        |
|     | call to fact function. Each time when a function makes a call to itself, it save                                                                                                                                                                                                                                                           |                                          |                                          |                                          |                                       |         |               | t save |                                        |
|     | function is calle                                                                                                                                                                                                                                                                                                                          | d from m                                 | and then ain functi                      | on, it initia                            | alizes n                              | with 5. | Return state  | ement  |                                        |
|     | inside function                                                                                                                                                                                                                                                                                                                            | body exe                                 | ecutes a                                 | recursive                                | function                              | n call. | In this call, | first  |                                        |
|     | value of n is stored using push () operation in stack $(n=5)$ and a function is                                                                                                                                                                                                                                                            |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | called again with value $4(n-1)$ . In each call, value of n is push into the stack                                                                                                                                                                                                                                                         |                                          |                                          |                                          |                                       |         |               | stack  |                                        |
|     | and then it is reduce by 1 to send it as argument to recursive call. When a                                                                                                                                                                                                                                                                |                                          |                                          |                                          |                                       |         |               | hen a  |                                        |
|     | function is called with $n=1$ , recursive process stops. At the end all values from stack are retrieved one by one using pop () operation to perform                                                                                                                                                                                       |                                          |                                          |                                          |                                       |         |               |        |                                        |
|     | multiplication to                                                                                                                                                                                                                                                                                                                          | calculate                                | factoria                                 | l of numbe                               | r.                                    | ) open  |               |        |                                        |
|     | f(1)<br>true return 1;                                                                                                                                                                                                                                                                                                                     | POP                                      |                                          |                                          |                                       |         |               |        |                                        |
|     | f(2)<br>false<br>return 2**f(1)                                                                                                                                                                                                                                                                                                            | f(2)<br>false<br>return 2*1              | POP                                      |                                          |                                       |         |               |        |                                        |
|     | f(3)<br>false<br>return 3*f(2)                                                                                                                                                                                                                                                                                                             | f(3)<br>false<br>return 3*f(2)           | f(3)<br>false<br>return 3*2              | POP                                      |                                       |         |               |        |                                        |
|     | f(4)<br>false<br>return 4*f(3)                                                                                                                                                                                                                                                                                                             | f(4)<br>false<br>return 4*f(3)           | f(4)<br>false<br>return 4#f(3)           | f(4)<br>false<br>return 4*6              | POP                                   |         |               |        |                                        |
|     | f(5)<br>// line 1 false<br>return 5*f(4)                                                                                                                                                                                                                                                                                                   | f(5)<br>// line 1 false<br>return 5*f(4) | f(5)<br>// line 1 false<br>return 5#f(4) | f(5)<br>// line 1 false<br>return 5*f(4) | f(5)<br># line 1 false<br>return 5*24 | POP     |               |        |                                        |
|     | main()                                                                                                                                                                                                                                                                                                                                     | main()                                   | main()                                   | main()                                   | main()                                | main()  | POP           |        |                                        |











